[image:]

Data Engineering Guide

Stream Processing Patterns

Version: 1.0
Date: January 2026
Author: Mastech Digital - Data Engineering Practice

Document Information
	Field
	Value

	Version
	1.0

	Last Updated
	2025-01-29

	Classification
	Internal Use

	Owner
	Data Engineering Team

1. Executive Summary
Stream processing patterns represent proven architectural solutions to common real-time data processing challenges. This guide catalogs essential patterns for building robust, scalable streaming applications on Databricks, covering everything from basic transformations to complex event processing.
Pattern Categories
	Category
	Purpose
	Example Patterns

	Ingestion
	Reliable data capture
	Multi-source, validation, backpressure

	Transformation
	Data enrichment
	Lookup joins, aggregations, windowing

	State Management
	Stateful processing
	Sessionization, deduplication

	Output
	Reliable delivery
	Exactly-once, fan-out, CDC

	Operational
	Production stability
	Monitoring, recovery, scaling

2. Ingestion Patterns
2.1 Multi-Source Ingestion
Consolidate data from multiple sources into a unified stream.
Pattern: Union multiple Kafka topics
from pyspark.sql import functions as F

Define source topics
topic_configs = [
 {"topic": "orders", "key_field": "order_id"},
 {"topic": "payments", "key_field": "payment_id"},
 {"topic": "shipments", "key_field": "shipment_id"}
]

def create_source_stream(config):
 return (spark.readStream
 .format("kafka")
 .option("kafka.bootstrap.servers", brokers)
 .option("subscribe", config["topic"])
 .option("startingOffsets", "earliest")
 .load()
 .selectExpr("CAST(value AS STRING) as payload")
 .withColumn("source_topic", F.lit(config["topic"]))
 .withColumn("event_time", F.current_timestamp())
)

Create and union streams
streams = [create_source_stream(c) for c in topic_configs]
unified_stream = streams[0]
for stream in streams[1:]:
 unified_stream = unified_stream.union(stream)

Write to unified bronze table
query = (unified_stream.writeStream
 .format("delta")
 .option("checkpointLocation", "/checkpoints/unified")
 .toTable("bronze.all_events")
)
2.2 Validation Gate Pattern
Validate incoming data before processing.
def validation_gate(batch_df, batch_id):
 """Validate and route records based on quality."""

 # Define validation rules
 validated = (batch_df
 .withColumn("has_required_fields",
 F.col("event_id").isNotNull() &
 F.col("timestamp").isNotNull())
 .withColumn("has_valid_timestamp",
 F.col("timestamp") <= F.current_timestamp())
 .withColumn("is_valid",
 F.col("has_required_fields") & F.col("has_valid_timestamp"))
)

 # Route valid records
 valid_records = validated.filter(F.col("is_valid"))
 valid_records.write.format("delta").mode("append").saveAsTable("silver.events")

 # Route invalid records to quarantine with reason
 invalid_records = (validated
 .filter(~F.col("is_valid"))
 .withColumn("validation_errors", F.array(
 F.when(~F.col("has_required_fields"), F.lit("missing_required_fields")),
 F.when(~F.col("has_valid_timestamp"), F.lit("future_timestamp"))
))
 .withColumn("quarantine_time", F.current_timestamp())
)
 invalid_records.write.format("delta").mode("append").saveAsTable("quarantine.events")

query = (stream.writeStream
 .foreachBatch(validation_gate)
 .option("checkpointLocation", "/checkpoints/validation")
 .start()
)
2.3 Backpressure Pattern
Prevent overwhelming downstream systems.
Pattern: Rate-limited ingestion with monitoring

class BackpressureController:
 def __init__(self, max_rows_per_second=10000):
 self.max_rows_per_second = max_rows_per_second
 self.last_batch_time = None
 self.last_batch_size = 0

 def process_with_backpressure(self, batch_df, batch_id):
 import time

 batch_size = batch_df.count()
 current_time = time.time()

 # Calculate required delay
 if self.last_batch_time:
 elapsed = current_time - self.last_batch_time
 expected_time = self.last_batch_size / self.max_rows_per_second
 if elapsed < expected_time:
 time.sleep(expected_time - elapsed)

 # Process batch
 batch_df.write.format("delta").mode("append").saveAsTable("target_table")

 # Update state
 self.last_batch_time = time.time()
 self.last_batch_size = batch_size

controller = BackpressureController(max_rows_per_second=5000)

query = (stream.writeStream
 .foreachBatch(controller.process_with_backpressure)
 .option("checkpointLocation", "/checkpoints/backpressure")
 .start()
)
3. Transformation Patterns
3.1 Stream Enrichment with Lookup
Enrich streaming data with reference data.
Pattern: Broadcast join for small lookup tables

Load reference data as broadcast
customer_dim = spark.table("dim.customers").cache()
product_dim = spark.table("dim.products").cache()

def enrich_events(batch_df, batch_id):
 """Enrich events with dimension data."""

 enriched = (batch_df
 # Join with customer dimension
 .join(
 F.broadcast(customer_dim),
 batch_df.customer_id == customer_dim.id,
 "left"
)
 .select(
 batch_df["*"],
 customer_dim["name"].alias("customer_name"),
 customer_dim["segment"].alias("customer_segment")
)
 # Join with product dimension
 .join(
 F.broadcast(product_dim),
 batch_df.product_id == product_dim.id,
 "left"
)
 .select(
 "*",
 product_dim["name"].alias("product_name"),
 product_dim["category"].alias("product_category")
)
)

 enriched.write.format("delta").mode("append").saveAsTable("silver.enriched_events")

query = (stream.writeStream
 .foreachBatch(enrich_events)
 .option("checkpointLocation", "/checkpoints/enrichment")
 .trigger(processingTime="30 seconds")
 .start()
)

Refresh dimensions periodically
def refresh_dimensions():
 global customer_dim, product_dim
 customer_dim = spark.table("dim.customers").cache()
 product_dim = spark.table("dim.products").cache()
3.2 Streaming Aggregations
Real-time aggregations with windowing.
Pattern: Multi-level aggregations

Level 1: Per-minute metrics
minute_metrics = (stream
 .withWatermark("event_time", "5 minutes")
 .groupBy(
 F.window("event_time", "1 minute"),
 "product_category"
)
 .agg(
 F.count("*").alias("event_count"),
 F.sum("amount").alias("total_amount"),
 F.approx_count_distinct("customer_id").alias("unique_customers")
)
)

Write minute metrics
minute_query = (minute_metrics.writeStream
 .format("delta")
 .outputMode("append")
 .option("checkpointLocation", "/checkpoints/minute_metrics")
 .toTable("gold.minute_metrics")
)

Level 2: Hourly rollups (reads from minute metrics)
hourly_stream = spark.readStream.table("gold.minute_metrics")

hourly_metrics = (hourly_stream
 .withWatermark("window.start", "2 hours")
 .groupBy(
 F.window("window.start", "1 hour"),
 "product_category"
)
 .agg(
 F.sum("event_count").alias("total_events"),
 F.sum("total_amount").alias("total_amount"),
 F.sum("unique_customers").alias("total_unique_customers")
)
)

hourly_query = (hourly_metrics.writeStream
 .format("delta")
 .outputMode("append")
 .option("checkpointLocation", "/checkpoints/hourly_metrics")
 .toTable("gold.hourly_metrics")
)
3.3 Complex Event Processing (CEP)
Detect patterns across events.
Pattern: Sequence detection using session windows

Detect "browse → cart → purchase" sequences
session_events = (stream
 .withWatermark("event_time", "30 minutes")
 .groupBy(
 F.session_window("event_time", "10 minutes"),
 "user_id"
)
 .agg(
 F.collect_list(
 F.struct("event_type", "event_time", "product_id")
).alias("events"),
 F.min("event_time").alias("session_start"),
 F.max("event_time").alias("session_end")
)
)

def detect_conversion_funnel(batch_df, batch_id):
 """Detect purchase funnel completion."""

 conversions = (batch_df
 .withColumn("event_sequence",
 F.transform(F.col("events"), lambda x: x.event_type))
 .withColumn("has_browse", F.array_contains(F.col("event_sequence"), "browse"))
 .withColumn("has_cart", F.array_contains(F.col("event_sequence"), "add_to_cart"))
 .withColumn("has_purchase", F.array_contains(F.col("event_sequence"), "purchase"))
 .withColumn("full_conversion",
 F.col("has_browse") & F.col("has_cart") & F.col("has_purchase"))
 .filter(F.col("full_conversion"))
)

 conversions.write.format("delta").mode("append").saveAsTable("gold.conversions")

query = (session_events.writeStream
 .foreachBatch(detect_conversion_funnel)
 .option("checkpointLocation", "/checkpoints/cep")
 .start()
)
4. State Management Patterns
4.1 Deduplication Pattern
Remove duplicate events based on unique identifiers.
Pattern 1: Time-bounded deduplication (recommended)
deduplicated = (stream
 .withWatermark("event_time", "1 hour")
 .dropDuplicatesWithinWatermark(["event_id"])
)

Pattern 2: Global deduplication with foreachBatch
from delta.tables import DeltaTable

def deduplicate_with_delta(batch_df, batch_id):
 """Deduplicate using Delta MERGE."""

 if batch_df.isEmpty():
 return

 target = DeltaTable.forName(spark, "silver.events")

 (target.alias("t")
 .merge(
 batch_df.alias("s"),
 "t.event_id = s.event_id"
)
 .whenNotMatchedInsertAll()
 .execute()
)

query = (stream.writeStream
 .foreachBatch(deduplicate_with_delta)
 .option("checkpointLocation", "/checkpoints/dedup")
 .start()
)
4.2 Sessionization Pattern
Group events into user sessions.
Pattern: Session windows with custom gap duration

def dynamic_session_gap(df):
 """Calculate dynamic session gap based on user behavior."""
 return (df
 .withColumn("session_gap",
 F.when(F.col("user_type") == "power_user", F.lit("5 minutes"))
 .when(F.col("user_type") == "casual", F.lit("30 minutes"))
 .otherwise(F.lit("15 minutes"))
)
)

Standard session window
sessions = (stream
 .withWatermark("event_time", "1 hour")
 .groupBy(
 F.session_window("event_time", "15 minutes"),
 "user_id"
)
 .agg(
 F.count("*").alias("events_in_session"),
 F.collect_list("event_type").alias("event_sequence"),
 F.min("event_time").alias("session_start"),
 F.max("event_time").alias("session_end"),
 F.sum("amount").alias("session_revenue")
)
 .withColumn("session_duration_minutes",
 (F.unix_timestamp("session_end") - F.unix_timestamp("session_start")) / 60
)
)

query = (sessions.writeStream
 .format("delta")
 .outputMode("append")
 .option("checkpointLocation", "/checkpoints/sessions")
 .toTable("gold.user_sessions")
)
4.3 Running Aggregates Pattern
Maintain running totals across time.
Pattern: Running totals with mapGroupsWithState (advanced)
from pyspark.sql.streaming import GroupState, GroupStateTimeout

@pandas_udf("customer_id string, running_total double, last_updated timestamp")
def running_total_udf(
 key: Tuple[str],
 pdf_iter: Iterator[pd.DataFrame],
 state: GroupState
) -> Iterator[pd.DataFrame]:
 """Maintain running totals per customer."""

 customer_id = key[0]

 # Get existing state
 if state.exists:
 running_total = state.get
 else:
 running_total = 0.0

 for pdf in pdf_iter:
 # Update running total
 running_total += pdf["amount"].sum()

 # Update state
 state.update(running_total)

 yield pd.DataFrame({
 "customer_id": [customer_id],
 "running_total": [running_total],
 "last_updated": [pd.Timestamp.now()]
 })

Alternative: Simple approximation with windowed aggregates
running_totals = (stream
 .withWatermark("event_time", "1 day")
 .groupBy(
 F.window("event_time", "1 day", "1 hour"),
 "customer_id"
)
 .agg(F.sum("amount").alias("daily_total"))
)
5. Output Patterns
5.1 Exactly-Once Delivery Pattern
Ensure messages are delivered exactly once.
Pattern: Idempotent writes with transaction ID

def exactly_once_write(batch_df, batch_id):
 """Write with exactly-once guarantees using MERGE."""

 # Add transaction ID for idempotency
 batch_with_txn = (batch_df
 .withColumn("_txn_id", F.concat(
 F.lit(f"batch_{batch_id}_"),
 F.monotonically_increasing_id()
))
)

 target = DeltaTable.forName(spark, "silver.events")

 (target.alias("t")
 .merge(
 batch_with_txn.alias("s"),
 "t._txn_id = s._txn_id"
)
 .whenMatchedUpdateAll() # Idempotent update
 .whenNotMatchedInsertAll()
 .execute()
)

query = (stream.writeStream
 .foreachBatch(exactly_once_write)
 .option("checkpointLocation", "/checkpoints/exactly_once")
 .start()
)
5.2 Fan-Out Pattern
Write to multiple destinations simultaneously.
def fan_out_write(batch_df, batch_id):
 """Write to multiple destinations."""

 # Cache batch for reuse
 batch_df.cache()

 try:
 # Destination 1: Delta Lake for analytics
 batch_df.write.format("delta").mode("append").saveAsTable("silver.events")

 # Destination 2: Kafka for downstream consumers
 (batch_df
 .select(
 F.col("event_id").cast("string").alias("key"),
 F.to_json(F.struct("*")).alias("value")
)
 .write
 .format("kafka")
 .option("kafka.bootstrap.servers", brokers)
 .option("topic", "processed-events")
 .save()
)

 # Destination 3: Real-time metrics to Redis (example)
 metrics = batch_df.groupBy("event_type").count().collect()
 # push_to_redis(metrics)

 finally:
 batch_df.unpersist()

query = (stream.writeStream
 .foreachBatch(fan_out_write)
 .option("checkpointLocation", "/checkpoints/fanout")
 .start()
)
5.3 Change Data Capture (CDC) Pattern
Propagate changes to downstream systems.
Pattern: CDC from Delta Lake to downstream

Enable Change Data Feed on source
ALTER TABLE source_table SET TBLPROPERTIES (delta.enableChangeDataFeed = true)

cdc_stream = (spark.readStream
 .format("delta")
 .option("readChangeFeed", "true")
 .option("startingVersion", "latest")
 .table("silver.customers")
)

def propagate_changes(batch_df, batch_id):
 """Propagate CDC changes to downstream systems."""

 # Handle different change types
 inserts = batch_df.filter(F.col("_change_type") == "insert")
 updates = batch_df.filter(F.col("_change_type") == "update_postimage")
 deletes = batch_df.filter(F.col("_change_type") == "delete")

 # Propagate inserts
 if inserts.count() > 0:
 inserts.drop("_change_type", "_commit_version", "_commit_timestamp") \
 .write.format("delta").mode("append").saveAsTable("downstream.customers")

 # Propagate updates (upsert)
 if updates.count() > 0:
 target = DeltaTable.forName(spark, "downstream.customers")
 (target.alias("t")
 .merge(updates.alias("s"), "t.customer_id = s.customer_id")
 .whenMatchedUpdateAll()
 .execute()
)

 # Propagate deletes
 if deletes.count() > 0:
 delete_ids = [row.customer_id for row in deletes.collect()]
 target = DeltaTable.forName(spark, "downstream.customers")
 target.delete(F.col("customer_id").isin(delete_ids))

query = (cdc_stream.writeStream
 .foreachBatch(propagate_changes)
 .option("checkpointLocation", "/checkpoints/cdc")
 .start()
)
6. Operational Patterns
6.1 Graceful Degradation Pattern
Handle failures without stopping the stream.
import logging

def graceful_processing(batch_df, batch_id):
 """Process with graceful degradation."""

 try:
 # Primary processing
 enriched = enrich_with_external_api(batch_df)
 enriched.write.format("delta").mode("append").saveAsTable("silver.enriched")

 except ExternalAPIException as e:
 logging.warning(f"External API failed, falling back: {e}")

 # Fallback: Write without enrichment
 batch_df.write.format("delta").mode("append").saveAsTable("silver.unenriched")

 # Queue for retry
 batch_df.write.format("delta").mode("append").saveAsTable("retry_queue.pending")

 except Exception as e:
 logging.error(f"Batch {batch_id} failed: {e}")

 # Store failed batch for investigation
 (batch_df
 .withColumn("_error", F.lit(str(e)))
 .withColumn("_batch_id", F.lit(batch_id))
 .write.format("delta").mode("append")
 .saveAsTable("dlq.failed_batches")
)
6.2 Monitoring Pattern
Comprehensive stream monitoring.
class StreamMonitor:
 def __init__(self, alert_threshold_seconds=300):
 self.alert_threshold = alert_threshold_seconds
 self.metrics = []

 def monitor_query(self, query):
 """Monitor streaming query health."""
 import time

 while query.isActive:
 progress = query.lastProgress
 if progress:
 metrics = {
 "timestamp": time.time(),
 "batch_id": progress["batchId"],
 "input_rows": progress["numInputRows"],
 "processing_rate": progress["processedRowsPerSecond"],
 "batch_duration_ms": progress["batchDuration"],
 "input_rows_per_second": progress["inputRowsPerSecond"]
 }

 self.metrics.append(metrics)

 # Alert on slow processing
 if progress["batchDuration"] > self.alert_threshold * 1000:
 self.send_alert(f"Slow batch: {progress['batchDuration']}ms")

 # Alert on low throughput
 if progress["processedRowsPerSecond"] < 10:
 self.send_alert(f"Low throughput: {progress['processedRowsPerSecond']}/sec")

 # Check for exceptions
 if query.exception():
 self.send_alert(f"Stream failed: {query.exception()}")
 break

 time.sleep(30)

 def send_alert(self, message):
 """Send alert to monitoring system."""
 print(f"ALERT: {message}")
 # Integrate with PagerDuty, Slack, etc.

Usage
monitor = StreamMonitor(alert_threshold_seconds=300)
threading.Thread(target=monitor.monitor_query, args=(query,)).start()
6.3 Scaling Pattern
Dynamic scaling based on workload.
Pattern: Adaptive trigger based on backlog

def adaptive_trigger(query):
 """Adjust trigger interval based on backlog."""

 while query.isActive:
 progress = query.lastProgress
 if progress:
 input_rate = progress.get("inputRowsPerSecond", 0)
 processing_rate = progress.get("processedRowsPerSecond", 0)

 # Calculate backlog ratio
 if processing_rate > 0:
 backlog_ratio = input_rate / processing_rate

 # Adjust trigger (would need to restart stream)
 if backlog_ratio > 2:
 print("SCALE UP: Backlog growing")
 # Trigger cluster scale-up or reduce trigger interval
 elif backlog_ratio < 0.5:
 print("SCALE DOWN: Overcapacity")
 # Trigger cluster scale-down or increase trigger interval

 time.sleep(60)
7. Best Practices Summary
7.1 Pattern Selection Guide
	Requirement
	Recommended Pattern

	Multiple sources
	Multi-Source Ingestion

	Data quality
	Validation Gate

	Reference data joins
	Stream Enrichment

	Time-based analytics
	Streaming Aggregations

	Remove duplicates
	Deduplication

	User behavior analysis
	Sessionization

	Multiple outputs
	Fan-Out

	Downstream sync
	CDC

7.2 Anti-Patterns to Avoid
	Anti-Pattern
	Problem
	Solution

	Unbounded state
	Memory exhaustion
	Use watermarks

	Synchronous external calls
	Blocking processing
	Use foreachBatch with async

	No error handling
	Silent failures
	Implement DLQ

	Single checkpoint
	Cannot replay
	Separate checkpoints per stream

Document Control
	Field
	Value

	Version
	1.0

	Created
	2025-01-29

	Last Updated
	2025-01-29

	Next Review
	2025-04-29

	Author
	Data Engineering Team

image1.png
#MAST=CH
DIGITAL

